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Fig. 1. A schematic of the 
experimental setup: a fly 
was immobilized with wax, 
its body in a plastic tube, 
with its head protruding. 
Through a small hole in the 
back of the head an electrode 
was inserted to record 
extracellular potentials from 
a specific neuron (called H1), 
a wide-field neuron sensitive 
to horizontal motion. This 
signal was amplified, fed 
through a slip-ring system to 
a second-stage amplifier and 
filter, and recorded by a data 
acquisition card. The signals 
were recorded in response to 
rotation of the whole setup 
around the vertical axis on a 
stepper motor. The angular 
velocity signal supplied by 
the motor was, in its turn, 
extracted from movies of flight 
behavior of real free-flying 
flies.

Which computational primitives endow animal 
brains with their information-processing abilities, 
abilities that far exceed those of even the best 

modern computers? Answering this question would 
drastically change every facet of the society we live in, 
allowing the design of computers that are able to analyze 
satellite images and other intelligence data, recognize human 
faces, drive cars in urban centers, and help solve other 
national and global security 
problems.

Since the work of Emil du 
Bois-Reymond in 1848 and 
a series of discoveries by 
Santiago Ramón y Cajal 
(Nobel Prize in Physiology, 
1906), it has been known 
that animal brains derive 
their powers from networks 
of interacting neurons 
of different types, which 
communicate with each 
other using stereotyped 
impulses, called action 
potentials or spikes. 
However, most experiments, 
going back to E. D. Adrian 
and Yngve Zotterman 
(1926) [1], seemed to suggest 
that the precise times of 
occurrence of these spikes 
matter little, and only the 
number of spikes over long 

time intervals (up to 100 ms or more) is used by neurons 
to encode their messages. This result has influenced the 
design of artificial neural networks, which, starting with the 
Perceptron [2], has neglected precise spike timing in favor of 
what has become known as the rate coding hypothesis [3].

However, such artificial neural networks have largely failed 
to deliver human-like cognitive performance. It has been 
suggested that one of the reasons behind this failure is the 
neglect of precise spike timing. A series of experiments 
by different scientists, summarized in [2], has shown that 
timing down to about 2 ms may be important for neuronal 
communication in visual information processing, supporting 
the argument. However, the duration of a single spike and 
the minimum distance between two successive spikes in real 
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Fig. 2. The information 
content of the spike train as a 
function of time resolution t. 
The information is measured 
in “words” of duration of 25 
ms, which corresponds to the 
fly’s behavioral time scale. 
We plot this as a rate, in bits 
per second. Notice that the 
rate increases as the accuracy 
of spike-timing resolution 
increases.

neurons is smaller than that. Could it be that animals use the 
spike timing to even higher precision, but the experiments 
have failed to see this usage?

In a 2008 article [4] the LANL-led team has explored 
the possibility that, when put in a natural environment 
(compared with earlier experiments done in a laboratory) 
with rich, dynamic, interesting stimuli, animals use spike 
timing with a precision down to a fraction of a millisecond. 
We used microelectrodes to record from the motion-sensitive 
neurons in the visual system of a common blowfly. To ensure 
that the fly’s experiences were close to those in free flight, 
we immobilized the animal in an elaborate turntable-like 
mechanism, which was rotated to mimic the fly’s natural 
acrobatic flight and was placed outdoors in the fly’s natural 
environment (see Fig. 1).

We viewed the recording from the visual neuron as one 
would view a digital communication stream. We have 
explored how much information, in bits, is available in 
this stream when the position of each spike is known to 
a different accuracy. Data analysis for this experiment 
was even more difficult than the experiment itself: it took 
six years and required development of conceptually new 
statistical tools. When all the dust settled, we found that 
precise spike timing is important down to a resolution of 
0.2-0.3 ms, an order of magnitude more precise than previous 
estimates in the literature (see Fig. 2). That is, neurons 
communicating with each other use precise spike timing 
to encode their messages, and this precision can be seen by 
observing that the information content of a spike train is 
higher if spike positions are known to a higher precision.

Such temporal accuracy is very far from Adrian’s rate-
coding theory, and it re-examines fundamental assumptions 
that became the basis of computational neuroscience and 
neuromimetic approaches to artificial intelligence.  It is now 
clear that next-generation neural networks must consider 
precise spike timing as the mode of communication between 
their neurons as a very important computational primitive. 
Correspondingly, a new LANL Directed Research project 
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started in FY09 will do just that, aiming at building the 
world-leading neuromimetic visual data processing platform 
based, in part, on proper incorporation of spiking into 
neuronal communications.

For further information contact Ilya Nemenman at 
nemenman@lanl.gov.
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